

The Arab Atomic Energy Agency (AAEA)

The Contribution of the AAEA in Desalination Projects in Arab Countries Mahmoud Nasreddine

League Of Arab States

(22 Countries)

Population 312 Million Most of these countries lie in arid and semi-arid regions

Gulf Countries:

UAE Other Arab Countries:

KSA Lebanon

Qatar Syria

Oman Jordan

Bahrain Palestine

Kuwait Yemen

African Countries: Iraq

Algeria

Morocco

Tunisia

Libya

Egypt

Sudan

Somalia

Djibouti

Comoros

Mauritania

Scarce of water is a major problem

The AAEA

- The Arab league system. Established in 1989
- Promotes peaceful application of atomic energy through many activities; training, CRPs, meetings and conferences.....

The need for water and electricity in the region

- Arab countries are very poor in water resources
- The population will be doubled (650 million) in 2030
- The Domestic and industrial water demand will be 360 million m³/day
- Electrical power consumption will be 4.5 trillion kwh/day

The desalination

- The Arab world contributes of about 60% of desalinated water production
- Most desalination today uses fossil fuels, which are decaying > greenhouse gases
- The technologies used are MSF, RO, MED
- The desalination processes is highly power intensive
- RO needs 6kwh per cubic meter of water
- MSF and MED require heat at 70-1300° and use 25-200 kwh/m³

The nuclear desalination

- SMRs are proven to be suitable for desalination, often with cogeneration of electricity
- The feasibility of nuclear desalination plants has been proven in many countries; Kazakhstan, Japan, India...
- FIAEA fostering a CRP on coupling of nuclear reactor and desalination systems with participation of 9 states 3 are Arab countries
- The AAEA launched its CRP on nuclear desalination with conjunction of IAEA CRP

The AAEA Project of Nuclear desalination

- 9 countries participated in this project; Egypt, Libya, Tunisia, Lebanon, Jordon, Syria, Saudi Arabia, Morocco and Iraq
- The objective was to define and develop the steps and methods to establish a nuclear desalination plant in the Arab region
- A principal committee and many technical groups have been formed

The Tasks of the Technical Groups

- Selecting a reference site which will be suitable for construction of the plant.
- Identification of the reactor type, size and characteristics.
- Identification of the desalination process which goes along with the model plant.
- Defining the infrastructure requirements for the reference site.
- Feasibility study.
- Safety and licensing

Siting Studies Group

The parameters of a different available qualified sites have been studied, a model site with specific characteristics has been adopted

- The selection criteria included geological, meteorological, cooling water supply, transport infrastructure, population, electric grid, water network, environmental impact, airport movement.
- The specification and characteristics of a virtual site has been determined and given a name, ARAFRA
- ARAFRA is a virtual city located somewhere in coastal area in north Africa with population of 600000 and the average consumption of water is 0.33 m3/day.person
- Some qualified sites are already studied such as: Dabaa-Egypt, TanTan-Morocco, Rabigh-Saudi Arabia, Oran-Algeri, Ganush-Tunisia and Sirt-Libya

Reactor Technology Group

investigates and selects the type and characteristics of the reactor to be considered

- The technical group relied on the IAEA Options Identification Program (OIP) and other documents i.e. Site requirements Document (SRD) and User Requirements Document (URD).
- The reactors which have been studied by the group are: PWRs; AP-600 and QP-300, HWRs; CANDU-6 and PWR-220, GCRs; PBMR, and other designs; SIR, ISIS and ATS-150.
- The group outlined in details the specifications of these reactor types; their safety, performance, design, fuel cycle, waste management and national requirements
- A special emphasis was given to the electricity demands considering both the used desalination system and electrical energy that the site area need.

 M.Nasreddine

Safety and Licensing Group

- The status of the regulatory structure available in the Arab states has been reviewed
- Proceeds with the development of proposals for establishing a model approach for: safety regulatory and licensing rules regulations and procedure to be applied for nuclear desalination
- This should be consistent with international standards and practices

Desalination Technology and Coupling Schemes

- All available desalination processes and technologies including those mentioned in IAEA- North African Study Report have been considered and studied
- All coupling methodology has been considered as to determine the appropriate coupling scheme.
- The group suggested that the plant should produce 300-450 MWe electricity and 100000-150000 m3/day water.
- It suggested also that the MSF-RO process are most convenient because of low energy consumption and low cost.
- The high capacity MSF process may be considered depending on the circumstances or the two processes can be used together.

Feasibility study group

- The group assessed the economics of the model plant
- IAEA documents are always used as a reference guide.
- The study included: the capital cost, operation and maintenance costs, energy supply cost and costs of storage, transportation and distribution of water

conclusion

- The outcome of the studies carried out by the different technical groups has been submitted to the principal committee and thus to the directorate of the AAEA.
- The principal committee also has reviewed the IAEA desalination activities carried out for North African countries under RAF TC project.
- Many meetings and activities were held namely:
- Periodical meeting of different technical groups
- Workshop on computer program DEEP
- Workshop on Integrated Reactor Evaluation program
- Continuing the cooperation with IAEA